# Model DT3757 Series

Columbia's strain sensors take the work out of strain sensing. They are complete and thermally compensated strain sensing solutions. Columbia's strain sensors are much easier to install compared to foil strain gages by themselves and provide additional accuracy given the thermal compensation. Columbia's strain sensors have been flight qualified, including requirements to FAA DO-160, and have been used on military and commercial aircraft for more than 30 years. Columbia's strain sensors have been used on various aircraft including large cargo airplanes, fighter aircraft, and helicopters.

The DT3757 series takes Columbia's strain sensors to the next level by integrating an amplified within the sensor body providing a higher signal to noise ratio. Columbia's DT3757 has a signal 10 times higher than standard strain gages. In addition, the DT3757 series is interchangeable with Columbia's DT2684 series. The simplicity of use and reliability make them ideal for other applications including structural monitoring, geophysical measurements, and laboratory use.

Note: Exports from the United States are subject to the licensing requirements of the Export Administration Regulations (EAR) and/or the International Traffic in Arms Regulations (ITAR).

| SPECIFICATIONS<br>Operation <sup>1</sup> | Series DT3757                              |
|------------------------------------------|--------------------------------------------|
| Input Resistance                         | 1000Ω, ±2%                                 |
| Sensitivity                              | 10.25mV/V/1000µ€ <b>nominal</b>            |
| Rated Excitation Voltage                 | 7 to 10.0VDC                               |
| Internal Amplifier Current               | 120µA@10VDC maximum                        |
| Linearity                                | ±1.0% maximum                              |
| Zero Offset                              | ±0.5mV/V typical                           |
| Operating Range                          | ±3000µ€ 100 cycles / ±2000µ€ 10,000 cycles |
| Output Resistance                        | <u>1000Ω, ±2%</u>                          |
| Sensitivity Shift                        | ±0.013%/° F maximum                        |
| Hysteresis, Repeatability                | ±0.5% maximum                              |
| Zero Shift                               | ±0.00025mV/V/° F typical                   |
|                                          |                                            |

#### 2 Environmental

| Temperature Range     | -40° to 200°F                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------|
| Vibration             | 30g, 10Hz to 2KHz <sup>3</sup>                                                                  |
| Humidity              | MIL-STD-202 Method 103B <sup>3</sup>                                                            |
| Salt Spray            | MIL-STD-202 Method 101D (168 Hours) <sup>3</sup>                                                |
| Insulation Resistance | 100 Meg. min @ 500VDC                                                                           |
| Dielectric Strength   | 1050VRMS, 60Hz, 1 Min,                                                                          |
| Altitude              | Sea Level to 70.000 Ft. <sup>3</sup>                                                            |
| Flammability          | MIL-STD-202 Method 111A <sup>3</sup>                                                            |
| Shock                 | 100g, 11mSec <sup>3</sup>                                                                       |
| Fluids                | Resistance to short term exposure to fuel,<br>lubricating oils and hydrolic fluids <sup>3</sup> |

### Physical

| Size          | 0.562" Square x 0.28" Thick                               |
|---------------|-----------------------------------------------------------|
| Encapsulation | Silicone Rubber per MIL-S-23586A Type I, Class 2, Grade A |
| Weight        | Approx. 13gms (Depending on length of leads)              |
| Matrix        | 0.001" Polyimide                                          |
| Leads         | #26AWG, Teflon Ins, SPC, 12" Min.                         |

<sup>1</sup>@25°C

<sup>3</sup>Preliminary/Qualified by Similarity/Pending Testing <sup>2</sup>Installed Gage



- 2. Dummy gage(s) bonded to "Z Tab" of same material as
- structure. 3. Active gage bonded to structure under test.
- 4. "Z Tab" mounted to structure with bond or rivet.
- 5. Strain gage leads interwired and soldered to junction
- block
- 6. Entire unit covered with protective material.

- **High Signal to Noise Ratio** •
- Ease of Installation •
- Signal Gain of 10 •
- **Thermally Compensated** ō
- **High Reliability**







SCHEMATIC DIAGRAM

| Ordering Information* |             |                                      |
|-----------------------|-------------|--------------------------------------|
| Model                 | Lead Length | Compensating Material                |
| DT3757-1              | 48"         | Aluminum 7075-T6 or 7050-T73651, IVD |
| DT3757-2              | 48"         | Steel, AISI 4130 or HP9-420          |
| DT3757-3              | 48"         | Titanium TI-6AL-4V Annealed          |
| DT3757-4              | 48"         | Carbon/Epoxy MMS 549 Type 1          |

#### Fig. 2 Installation of Columbia Strain Sensor

- 1. Strain Sensor bonded to surface under test.
- 2. Leads connected to wire harness.
- 3. Coat sensor and wires with waterproofing material.

#### **ADVANTAGES**

Higher level accuracy 10X the output Less installation time No loss of structural integrity Optimum temperature compensation

## a Research Laboratories, Inc. 1925 MacDade Blvd. Woodlyn, PA 19094 USA

Phone: 1.800.813.8471 / Fax: 610.872.3882 / email: sales@crlsensors.com / Web: www.crlsensors.com